Perché l'agricoltura può produrre energia

dott. Agronomo Gabriele Chiodini

Pordenone 04/06/2024

Il Green Deal europeo: le politiche

- I. Energia pulita: la produzione e l'uso di energia rappresentano oltre il 75% delle emissioni di gas a effetto serra dell'UE;
- 2. Industria sostenibile: promozione dell'utilizzo di materiali riciclati nell'ottica di un'economia pulita;
- Costruire e ristrutturare in un' ottica di maggiore sostenibilità ambientale;
- 4. Mobilità sostenibile, sia pubblica che privata;
- 5. Maggiore tutela per biodiversità, foreste, oceani;
- 6. Strategia "dal produttore al consumatore";
- 7. Eliminazione dell'inquinamento.

Fonte: Commissione europea

1) Energia Pulita

- Maggiore efficienza energetica e sviluppo del settore energetico basato sulle fonti rinnovabili;
- Approvvigionamento energetico dell'UE a prezzi accessibili;
- **Collegare/integrare** più efficacemente alla rete le fonti di energia rinnovabili;
- Aumentare l'efficienza energetica e la progettazione ecocompatibile dei prodotti;
- Promuovere le **tecnologie innovative** e l'infrastruttura energetica moderna.

Italia: Piano per la Transizione Ecologica (PTE)

- Risponde alla sfida che l'Unione Europea con il Green Deal ha lanciato al mondo:
 - assicurare una crescita che preservi salute, sostenibilità e prosperità del pianeta, attraverso l'implementazione di una serie di misure sociali, ambientali, economiche e politiche, aventi come obiettivi, in linea con la politica comunitaria, la neutralità climatica, l'azzeramento dell'inquinamento, l'adattamento ai cambiamenti climatici, il ripristino della biodiversità e degli ecosistemi, la transizione verso l'economia circolare e la bioeconomia.
- le tematiche delineate e trattate nel Piano sono suddivise in:
 - Decarbonizzazione;
 - Mobilità sostenibile;
 - Miglioramento della qualità dell'aria;
 - Contrasto al consumo di suolo e al dissesto idrogeologico;
 - Miglioramento delle risorse idriche e delle relative infrastrutture;
 - Ripristino e rafforzamento della biodiversità;
 - Tutela del mare:
 - Promozione dell'economia circolare, della bioeconomia e dell'agricoltura sostenibile.
- Decarbonizzazione: apporto delle rinnovabili alla generazione elettrica dovrà raggiungere almeno il 72% al 2030, fino a sfiorare livelli prossimi al 95-100% nel 2050.

Gli alti paesi – qualche numero

Germania:

 II German Ministries of Economics and Climate Protection (BMWK), Environment (BMUV) and Agriculture (BMEL):
200 GWp attraverso l'agrivoltaico e correlati.

• Cina:

- nel 2023 si prevede di installare 120 GWp di nuova potenza solare (totale), portando la capacità nazionale oltre i 510 GWp.
- realizzato un impianto agrivoltaico nel 2023 da 700 MWp

Italia:

- 1,04 GWp finanziato con il PNRR;
- ne servono 50 al 2030; 70 al 2050.

IL MERCATO

Energia Elettrica - PUN

AGRIVOLTAICO: DEFINIZIONE

L'agrivoltaico: cosa è?

- L'Agrivoltaico è una tecnologia ibrida che, in una logica consociativa e simbiotica, di gestire ed ottimizzare la produzione agricola ed energetica nello stesso sito;
- è un sistema complesso che combina la produzione agricola ed energetica nello stesso spazio enfatizzando il doppio uso del suolo;
- attraverso tale innovazione si riesce a ottimizzare l'utilizzo della terra e, se adeguatamente progettata, ad ottenere un vantaggio per entrambe le dimensioni che la compongono;
- Incarna in pieno il concetto di intensificazione sostenibile dell'agricoltura, alla base di tutte le politiche di sviluppo del comparto.

L'agrivoltaico: cosa è?

Fotovoltaico + Agricoltura

100% Patate + 100 % Energia Solare

Agrivoltaico

103 % Patate

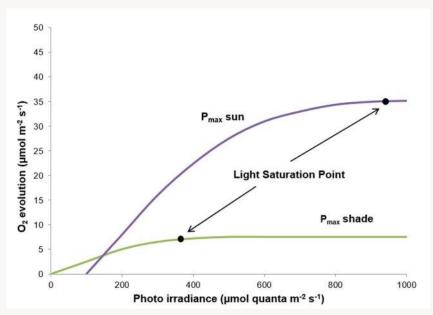
83 % Energia Solare

Fonte: Fraunhofer Institute for Solar Energy Systems ISE. (Germania).

Due usi del suolo - 1

- Normalmente fotovoltaico e attività agricole risultano in opposizione: le soluzioni ottimizzate per la massima captazione solare da parte del fotovoltaico possono generare condizioni meno favorevoli per l'agricoltura e viceversa:
 - un eccessivo ombreggiamento sulle piante può generare ricadute negative sull'efficienza fotosintetica e, dunque, sulla produzione;
 - le ridotte distanze spaziali tra i moduli e tra i moduli ed il terreno possono interferire con l'impiego di strumenti e mezzi meccanici in genere in uso in agricoltura;
- una soluzione che privilegi solo una delle due componenti fotovoltaico o agricoltura è passibile di presentare effetti negativi sull'altra;
- è importante progettare adeguatamente il sistema, considerando sia la dimensione energetica sia quella agronomica;
- un impianto agrivoltaico, rispetto agli impianti fotovoltaico a terra, presenta dunque una maggiore variabilità;
 - nella distribuzione in pianta dei moduli;
 - nell'altezza dei moduli da terra;
 - nei sistemi di supporto dei moduli;
 - nelle tecnologie fotovoltaiche impiegate, al fine di ottimizzare l'interazione con l'attività agricola realizzata.

Fonte: Linee Guida in materia di Impianti Agrivoltaici


Due usi del suolo - 2

- Un impianto agrivoltaico, rispetto agli impianti fotovoltaico a terra, presenta dunque una maggiore variabilità nella distribuzione in pianta dei moduli, nell'altezza dei moduli da terra, e nei sistemi di supporto dei moduli, oltre che nelle tecnologie fotovoltaiche impiegate, al fine di ottimizzare l'interazione con l'attività agricola realizzata.
- Nei contesti caldi e asciutti, la copertura offerta dai pannelli permette di ridurre l'evapotraspirazione e il consumo di acqua:
 - la temperatura e la disponibilità di acqua sono il principale fattore limitante allo sviluppo dell'agrivoltaico;
 - la disponibilità di luce diventa un fattore limitante per le colture solo se si sta al di sotto del punto di saturazione luminosa della coltura.
- Le applicazioni con l'orticoltura sono più immediate, ma è necessario adottare questa tecnologia anche nell'ambito delle colture estensive per garantire una maggior copertura del territorio.

Modificare il microclima

- L'agrivoltaico può alterare il microclima e, quindi, lo sviluppo delle colture.
- La progettazione del sistema agrivoltaico, con riferimento al rapporto di copertura del suolo, determina l'alterazione dei parametri microclimatici, come:
 - la temperatura dell'aria e del suolo,
 - l'umidità,
 - l'umidità del suolo,
 - la velocità del vento,
 - l'evapotraspirazione.
- I livelli di umidità del suolo e dell'aria generalmente risultano più elevati nei sistemi agrivoltaici rispetto al campo aperto;
- la temperatura del suolo e dell'aria risulta più equilibrata durante il giorno;
- la progettazione agrovoltaica avanzata ha come obiettivo il condizionamento del microclima per migliorare le condizioni di sviluppo delle colture.

La luce è un fattore limitante?

Il punto di saturazione della luce è un criterio cruciale per definire il rapporto di ombreggiamento di un sistema agrivoltaico o, una volta installato il sistema, per determinare l'idoneità delle colture da coltivare nel sistema.

Più basso è il punto di saturazione della luce, più ombra può essere data alla coltura senza subire perdite di rendimento:

- se i tassi di ombreggiamento vengono adeguati di conseguenza, è teoricamente possibile coltivare tutte le colture in un sistema agrivoltaico;
- altri fattori (ad esempio l'acqua) stanno già limitando la crescita delle colture;
- l'ombreggiamento non è necessariamente un ostacolo e può addirittura essere vantaggioso se riduce la domanda di acqua.

Effetti sulle colture

Gli studi condotti in Germania, riportano una prima valutazione del comportamento delle colture sottoposte alla riduzione della radiazione luminosa, distinguendole in:

- Colture non adatte: con un elevato fabbisogno di luce, per le quali anche modeste densità di copertura determinano una forte riduzione della resa;
 - frumento, farro, mais, alberi da frutto, girasole;
- Colture poco adatte: con un modesto fabbisogno di luce;
 - cavolfiore, barbabietola da zucchero, barbabietola rossa;
- Colture adatte: per le quali un'ombreggiatura moderata non ha quasi alcun effetto sulle rese;
 - segale, orzo, avena, cavolo verde, colza, piselli, asparago, carota, ravanello, porro, sedano, finocchio, tabacco;
- Colture mediamente adatte: in grado di avvantaggiarsi lievemente della presenza di un sistema di ombreggiamento;
 - cipolle, fagioli, cetrioli, zucchine;
- Colture molto adatte: ovvero colture per le quali l'ombreggiatura ha effetti positivi sulle rese quantitative;
 - patata, luppolo, spinaci, insalata, fave.

Fonte: Linee Guida in materia di Impianti Agrivoltaici

Effetti sulle colture – esempi (1)

Crop	Location	Shading rate	Yield change
Lettuce	Santiago, Chile	30%	(2) 8%
Broccoli	Santiago, Chile	30%	(2) 29%
Winter Wheat	Heggelbach, Germany	35%	(2) 19% (2017)
			(1) 3% (heat
B		0.504	summer 2018)
Potato	Heggelbach, Germany	35%	(2) 18%
Colomi	Hammalhanh Carrenny	250/	(1) 11%
Celery	Heggelbach, Germany	35%	(2) 19%
Clover Grass	Heggelbach, Germany	35%	(1) 12% (2) 5%
Clovel Glass	rieggebach, Germany	3570	(2) 8%
Lettuce (varieties Kiribati and	Montpellier, France	Half density, solar tracking, controlled	(2) 5% to (2) 30%
Madelona)	, , , , , , , , , , , , , , , , , , , ,	tracking	with fewer losses on controlled, that is, crop friendly tracking
Chiltepin pepper	Tucson, Arizona, USA	70%—80%	B (1) 150% ^a
Jalapeno	Tucson, Arizona, USA	70%—80%	B (2) 15%
Cherry Tomato	Tucson, Arizona, USA	70%—80%	B (1) 90%
Lettuce	Montpellier, France	Half density	(2) 19% to (2) 1% ^b
		Full density	(2) 42% to (2) 21%
Vine grapes	Piolenc, France	36%	B (1) 25%
		66%	B (2) 25%
Apple	Mallemort, France	B 50%	Similar growth rates whiles less water demand. However lower yields due to reduced fruit drop
Rice	Chiba, Japan	20%	(2) 20% ^c

3.4 Effetti sulle colture – esempi (2)

Crop	Location	Shading rate	Yield change
Corn	Kyoto, Japan	Low density	(1) 4.9% ^d
		High density	(2) 3.1%
Lettuce	Japan	50%	(2) 10% to (2) 40% depending on season.
Swiss Chard	South Deerfield, Massachusetts, USA	38%	B (1) 70% (2016, hot dry summer) B (2) 25% (2017 cold summer) B (2) 60% (2018)
Broccoli	Massachusetts, USA	38%	B (1) 40% B (2) 40% B (2) 45%
Kale	South Deerfield, Massachusetts, USA	38%	B (1) 25% B (2) 50% B (2) 45%
Bell Pepper	Massachusetts, USA	38%	B (1) 40% B (2) 40% B (2) 70%
Common Bean	South Deerfield, Massachusetts, USA	38%	B (1) 350% B (2) 65%
Cabbage ^e	Massachusetts, USA	38%	B (2) 30%

Fonte: Trommsdorff et al., 2022, Agrivoltaics: solar power generation and food production

Esperienze sul vigneto (1)

Aspetti positivi

- I migliori rendimenti in viticoltura con agrivoltaico sono stati ottenuti nel 2023: tra +10% (Chardonnay) e +45% (Grenache blanc).
- In presenza di temperature estreme (gelo o ondate di calore), l'agrivoltaico genera un microclima (suolo, piante e aria), in grado di preservare la crescita delle colture e la fotosintesi:
 - -4° C di temperatura e +14% di umidità e ambientale in estate;
 - +2° C di temperatura in inverno.
- Una vigna agrivoltaica non irrigata offre migliori prestazioni di una vigna irrigata (-30% di consumi idrici).
- L'agrivoltaico consente di diminuire le esigenze irrigue sui nostri siti dal 30 al 60% o di sostituire completamente i sistemi di irrigazione.
- Riduzione degli attacchi da parassiti:
 - microclima più confortevole per la vite;
 - possibilità di montare sistemi di protezione su supporti già in essere (reti e teli);
- L'infrastruttura agrivoltaica funge in primis da scudo difensivo per stabilizzare le produzioni annuali, limitando la percentuale di frutti e verdure danneggiati dai rischi climatici, quali scottature, forti piogge, grandinate, gelate.
- Elevato potenziale di trasferimento dell'immagine legata alla sostenibilità sul prodotto finale.

Esperienze sul vigneto (2)

Aspetti negativi

- La presenza di un sistema agrivoltaico limita lo svolgimento di alcune operazioni colturali (impianti non in completa elevazione):
 - raccolta meccanizzata;
 - trattamenti con tunnel di recupero;
 - cimatura meccanizzata;
 - pre-potatura meccanizzata.
- Il raggiungimento della maturazione dei grappoli viene posticipato (attenzione alle varietà tardive).
- Un ombreggiamento troppo elevato può compromettere la capacità del vigneto di produrre:
 - accumulo di zuccheri;
 - sviluppo di patogeni.

Impianto Piolenc Sun Agri

Esempi su colture estensive

Impianto RemTec Impianto Heggelbach

Esempi su piccoli frutti

Impianto Babberich

Esempi su funghicoltura

Tipologie costruttive e specificità

- Impianti Tracker:
 - Monoassiale, Biassiale;
 - 2P, 1P, 1L...
- Impianti Fissi:
 - a vela;
 - su palo;
 - a capanna.

Agrivoltaico avanzato

- L'agrivoltaico avanzato si caratterizza per l'altezza dei moduli da terra:
 - 1,3 mt nel caso di pascolo;
 - 2,1 mt nel caso di coltivazioni.
- Presenza di un sistema di monitoraggio del microclima:
 - temperatura;
 - umidità;
 - velocità dell'aria;
 - radiazione solare.

R&D in ambito agrivoltaico

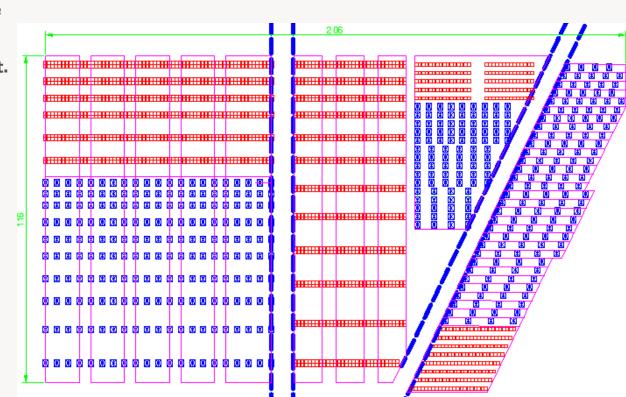
I NUMERI

- 1 Sito unico;
- 3,5 ha di campo sperimentale;
- presenza di sistemi di monitoraggio ambientale intra e extra sito;
- 6 aree test;
- luce libera per passaggio: 3,3 mt.

I DATI

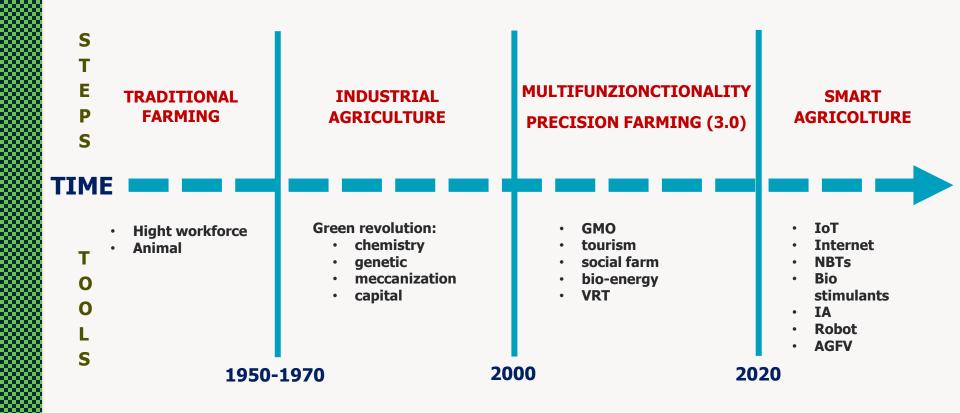
2 TIPOLOGIE DI COLTIVAZIONI:

- arboree;
- estensive.


2 TIPOLOGIE COSTRUTTIVE:

- su palo;
- su trave.

2 TECNOLOGIE:


- fisso;
- su tracker.

A GRADIENTE DI COPERTURA VARIABILE

CONSIDERAZIONI

L'agricoltura cambia, ancora

Conclusioni

- La produzione di energia diversifica le fonti di reddito aziendali (multifunzionalità);
 - vendita di energia;
 - autoconsumo;
 - filiere (prodotto + energia per lavorarlo, in comunità energetica con il trasformatore).
- la produzione di energia migliora il posizionamento aziendale:
 - immagine;
 - carbon foot print dei prodotti (Farm to Fork);
 - accesso/creazione di filiere.
- un nuovo ruolo anche per i terreni più marginali:
 - disponibilità di energia anche in territori più marginali;
 - redditività anche dai terreni agronomicamente meno performanti;
 - disponibilità di energia per effettuare attività a basso costo energetico e, quindi, migliorare la produttività della componente agricola;
 - valorizzazione patrimoniale anche dei terreni meno interessanti.
- sfruttare le semplificazione per il settore:
 - gli iter autorizzativi si sono ridotti rispetto a prima;
 - l'agricoltura ha accesso ad agevolazioni che altri settori non hanno;
 - filiera dell'energia parallela a quella del cibo grazie alle comunità energetiche;
 - entro entri certi limiti la produzione di energia è defiscalizzata.

Grazie per l'attenzione

dott. Gabriele Chiodini gabriele.chiodini@gmail.com